DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/4340

Titre: Numerical study of nanofluid heat transfer SiO2 through a solar flat plate collector
Auteur(s): Maouassi, Ammar
Baghidja, Abdelhadi
Daoud, Said
Zeraibi, Noureddine
Mots-clés: Solar Energy
CFD
Nanofluid
Heat Transfer
Sio2 Nanoparticles
Solar Flat Plate Collector
Date de publication: 2017
Editeur: International Information and Engineering Technology Association
Collection/Numéro: International Journal of Heat and Technology/ Vol.35, N°3 (2017);pp. 619-625
Résumé: This paper illustrates how practical application of nanoparticles (SiO2) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary (SiO2), is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 900. Results from the application of those nonfluids are obtained versus average temperature; pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that heat transfer increases with increasing both nanoparticles concentration and Reynolds number
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/4340
ISSN: 0392-8764
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Ammar Maouassi PDF.pdf1,78 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires