DSpace About DSpace Software
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Please use this identifier to cite or link to this item: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/4533

Titre: A modified Kullback divergence for direct fault detection in large scale systems
Auteur(s): Hamadouche, Anis
Kouadri, Abdelmalek
Bakdi, Azzeddine
Mots-clés: FDI
Change-point detection
Kernel methods
Density ratio
Kullback–Leibler
Tennessee Eastman process
Machine learning
Issue Date: 2017
Editeur: Elsevier
Collection/Numéro: Journal of Process Control/ Vol.59 (2017);pp. 28-36
URI: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/4533
ISSN: 0959-1524
Appears in Collections:Publications Internationales

Files in This Item:

File Description SizeFormat
Anis Hamadouche, résumé.pdf26,18 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback