DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5904

Titre: On solutions of time‐fractional advection–diffusion equation
Auteur(s): Attia, Nourhane
Akgül, Ali
Seba, Djamila
Nour, Abdelkader
Mots-clés: eproducing kernel Hilbert space method
fractional advection–diffusion equation
Atangana–Baleanu derivative
Gram–Schmidt orthogonalization process
convergence analysis
approximate solution
Date de publication: 2020
Editeur: WILEY ONLINE Library
Collection/Numéro: Numerical Methods for Partial Differential Equations.;
Résumé: In this paper, we present an attractive reliable numerical approach to find an approximate solution of the time‐fractional advection–diffusion equation (FADE) under the Atangana–Baleanu derivative in Caputo sense (ABC) with Mittag–Leffler kernel. The analytic and approximate solutions of FADE have been determined by using reproducing kernel Hilbert space method (RKHSM). The most valuable advantage of the RKHSM is its ease of use and its quick calculation to obtain the numerical solution of the FADE. Our main tools are reproducing kernel theory, some important Hilbert spaces, and a normal basis. The convergence analysis of the RKHSM is studied. The computational results are compared with other results of an appropriate iterative scheme and also by using specific examples, these results clearly show: On the one hand, the effect of the ABC‐fractional derivative with the Mittag–Leffler kernel in the obtained outcomes, and on the other hand, the superior performance of the RKHSM. From a numerical viewpoint, the RKHSM provides the solution's representation in a convergent series. Furthermore, the obtained results elucidate that the proposed approach gives highly accurate outcomes. It is worthy to observe that the numerical results of the specific examples show the efficiency and convenience of the RKHSM for dealing with various fractional problems emerging in the physical environment.
URI/URL: https://doi.org/10.1002/num.22621
https://onlinelibrary.wiley.com/doi/epdf/10.1002/num.22621
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5904
ISSN: Online ISSN:1098-2426
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires