DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5948

Titre: Kaolinite-Magnesite or Kaolinite–Talc-Based Ceramics. Part II: Microstructure and the Final Properties Related Sintered Tapes
Auteur(s): Hammas, Aghiles
Lecomte-Nana, Gisèle
Daou, Imane
Tessier-Doyen, Nicolas
Peyratout, Claire
Zibouche, Fatima
Mots-clés: kaolinite
talc
magnesite
tape casting
biaxial flexural strength
Date de publication: 2020
Editeur: MDPI
Résumé: In recent decades, talc and kaolinite have been widely used as raw materials for the ceramic industry. In this study, the final characteristics of kaolinitic clay mixed with 6 mass% of magnesite obtained in our previous work were compared with those obtained with mixtures of kaolin (kaolin BIP) and talc (as the source of magnesium oxide). However, different amounts of talc in the kaolin powder were studied, namely 10, 30, and 50 mass% of added talc (with respect to kaolin + talc). The tape casting process was used during this work in order to manufacture the green tapes in an aqueous system with 0.2 mass% of dispersant. Subsequently, the green tapes were heated to 1000 and 1100 °C with a dwelling time of 12 min. The green and sintering tapes were characterized using the following techniques: DTA/TG, X-ray diffraction, porosity, and flexural strength analyses. The results obtained from our previous work indicate that the specimen with 6 mass% of MgCO3 sintered at 1200 °C for 3 h exhibited the best performances, with high flexural strength and weak porosity value—117 MPa and 27%—respectively. As results from this study, the optimal mechanical and thermal properties of sintering tapes were obtained for the specimen with 10 mass% of added talc sintered at 1100 °C. Indeed, this specimen exhibited 50 MPa and 43% of stress to rupture and apparent porosity, respectively
URI/URL: https://doi.org/10.3390/min10121080
https://www.mdpi.com/2075-163X/10/12/1080
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5948
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
minerals-10-01080.pdf5,08 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires