Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6105
|
Titre: | Modeling viscosity of CO 2 at high temperature and pressure conditions |
Auteur(s): | Nait Amar, Menad Ghriga, Mohammed Abdelfetah Ouaer, Hocine Ben Seghier, Mohamed El Amine Thai Pham, Binh |
Mots-clés: | CO2 Viscosity Data-driven Correlations MLP GEP |
Date de publication: | 2020 |
Editeur: | Elsevier |
Collection/Numéro: | Journal of Natural Gas Science and Engineering Volume 77, May 2020, 103271; |
Résumé: | The present work aims at applying Machine Learning approaches to predict CO2 viscosity at different thermodynamical conditions. Various data-driven techniques including multilayer perceptron (MLP), gene expression programming (GEP) and group method of data handling (GMDH) were implemented using 1124 experimental points covering temperature from 220 to 673 K and pressure from 0.1 to 7960 MPa. Viscosity was modelled as function of temperature and density measured at the stated conditions. Four backpropagation-based techniques were considered in the MLP training phase; Levenberg-Marquardt (LM), bayesian regularization (BR), scaled conjugate gradient (SCG) and resilient backpropagation (RB). MLP-LM was the most fit of the proposed models with an overall root mean square error (RMSE) of 0.0012 mPa s and coefficient of determination (R2) of 0.9999. A comparison showed that our MLP-LM model outperformed the best preexisting Machine Learning CO2 viscosity models, and that our GEP correlation was superior to preexisting explicit correlations. |
URI/URL: | https://www.sciencedirect.com/science/article/pii/S1875510020301256#! http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6105 |
ISSN: | 1875-5100 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|