DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6223

Titre: Multi-class EEG signal classification for epileptic seizure diagnosis
Auteur(s): Cherifi, Dalila
Afoun, Laid
Iloul, Zakaria
Boukerma, Billal
Adjerid, Chaouki
Boubchir, Larbi
Nait-Ali, Amine
Mots-clés: EEG
Wavelet packet decomposition
Features extraction
Epilepsy diagnosis
Date de publication: 2020
Editeur: Springer
Collection/Numéro: International Conference in Artificial Intelligence in Renewable Energetic Systems/ (2020);pp. 635-645
Résumé: EEG signal recordings are increasingly replacing the old methods of diagnosis in medical field of many neurological disorders. Our contribution in this article is the study and development of EEG signal classification algorithms for epilepsy diagnosis using one rhythm; for classification, an optimum classifier is proposed with only when used one rhythm so that both execution time and number of features are reduced. We used wavelet packet decomposition (WPD) to extract the five rhythms of brain activity from the public Epilepsy-EEG recordings in order to represent each signal with features vector; then we applied on it the well-known classification methods. A statistical study is done to validate the different algorithms
URI/URL: https://link.springer.com/chapter/10.1007/978-3-030-63846-7_60
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6223
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Cherifi D..pdf592,52 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires