DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6569

Titre: Predictionofnaturalgashydratesformationusingacombinationofthermodynamicandneuralnetworkmodeling
Auteur(s): Rebai, Noura
Hadjadj, Ahmed
Benmounah, Abdelbaki
Abdallah, S.Berrouk
M.Boualleg, Salim
Mots-clés: Gas hydrate formation
Van der Waals-Platteeuw models
Artificial neural network
Backpropagation algorithm
Date de publication: 2019
Editeur: Elsevier
Collection/Numéro: Journal of Petroleum Scienceand Engineering; Vol. 182;
Résumé: During the treatment or transport of natural gas, the presence of water, even in very small quantities, can trigger hydrates formation that causes plugging of gas lines and cryogenic exchangers and even irreversible damages to expansion valves, turbo expanders and other key equipment. Hence, the need for a timely control and monitoring of gas hydrate formation conditions is crucial. This work presents a two-legged approach that combines thermodynamics and artificial neural network modeling to enhance the accuracy with which hydrates formation conditions are predicted particularly for gas mixture systems. For the latter, Van der Waals-Platteeuw thermodynamic model proves very inaccurate. To improve the accuracy of its predictions, an additional corrective term has been approximated using a trained network of artificial neurons. The validation of this approach using a database of 4660 data points shows a significant decrease in the overall relative error on the pressure from around 23.75%–3.15%. The approach can be extended for more complicated systems and for the prediction of other thermodynamics properties related to the formation of hydrates
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6569
ISSN: 0920-4105
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Article REBAI NOURA.pdf1,82 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires