DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7055

Titre: Real-Time prediction of plastic viscosity and apparent viscosity for Oil-Based drilling fluids using a committee machine with intelligent systems
Auteur(s): Youcefi, Mohamed Riad
Hadjadj, Ahmed
Bentriou, Abdelak
Boukredera, Farouk Said
Mots-clés: Apparent viscosity
Committee machine intelligent system
Drilling muds
MLP
Plastic viscosity
RBFNN
Date de publication: 2022
Editeur: Springer
Collection/Numéro: Arabian Journal for Science and Engineering/ Vol.47, N°9 (2021);pp. 11145-11158
Résumé: he prediction of drilling mud rheological properties is a crucial topic with significant importance in analyzing frictional pressure loss and modeling the hole cleaning. Based on Marsh viscosity, mud density, and solid percent, this paper implements a committee machine intelligent system (CMIS) to predict apparent viscosity (AV) and plastic viscosity (PV) of oil-based mud. The established CMIS combines radial basis function neural network (RBFNN) and multilayer perceptron (MLP) via a quadratic model. Levenberg–Marquardt algorithm was applied to optimize the MLP, while differential evolution, genetic algorithm, artificial bee colony, and particle swarm optimization were used to optimize the RBFNN. A databank of 440 and 486 data points for AV and PV, respectively, gathered from various Algerian fields was considered to build the proposed models. Statistical and graphical assessment criteria were employed for investigating the performance of the proposed CMIS. The obtained results reveal that the developed CMIS models exhibit high performance in predicting AV and PV, with an overall average absolute relative deviation (AARD %) of 2.5485 and 4.1009 for AV and PV, respectively, and a coefficient of determination (R2) of 0.9806 and 0.9753 for AV and PV, respectively. A comparison of the CMIS-AV with Pitt's and Almahdawi's models demonstrates its higher prediction capability than these previously published correlations
URI/URL: https://link.springer.com/article/10.1007/s13369-021-05748-8
DOI 10.1007/s13369-021-05748-8
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7055
ISSN: 2193567X
2191-428 Electronic
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Mohamed Riad Youcefi.pdf1,73 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires