DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7128

Titre: A deep neural network approach to QRS detection using autoencoders
Auteur(s): Belkadi, Mohamed Amine
Daamouche, Abdelhamid
Melgani, Farid
Mots-clés: ECG
Deep learning
Stacked autoencoder
QRS detection
Date de publication: 2021
Editeur: Elsevier
Collection/Numéro: Expert Systems with Applications/ Vol.184 (2021);
Résumé: Objective: In this paper, a stacked autoencoder deep neural network is proposed to extract the QRS complex from raw ECG signals without any conventional feature extraction phase. Methods: A simple architecture has been deeply trained on many datasets to ensure the generalization of the network at inference. Results: The proposed method achieved a QRS detection accuracy of 99.6% using more than 1042000 beats which is competitive with all state-of-the-art QRS detectors. Moreover, the proposed method produced only 0.82% of Detection Error Rate using six unseen datasets containing more than 1470000 beats. Thus confirms the high performance of our method to detect QRSs. Conclusion: Stacked autoencoder neural networks are very effective in QRS detection. At inference, our algorithm processes 1042309 beats in less than 25.32 s. Thus, it is favorably comparable with state-of-the-art deep learning methods. Significance: The stacked autoencoder is an efficient tool for QRS detection, which could replace conventional systems to help practitioners make fast and accurate decisions
URI/URL: DOI:10.1016/j.eswa.2021.115528
https://www.sciencedirect.com/science/article/abs/pii/S0957417421009362
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7128
ISSN: 0957-4174
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires