DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7242

Titre: Solving the unsupervised graph partitioning problem with genetic algorithms: Classical and new encoding representations
Auteur(s): Chaouche, Ali
Boulif, Menouar
Mots-clés: Graph partitioning
K-way partition
Genetic algorithm
Encoding representatio
P-median
Date de publication: 2019
Editeur: Elsevier
Collection/Numéro: Computers & Industrial Engineering /Vol.137 (2019);
Résumé: The Graph Partitioning Problem (GPP) is one of the most ubiquitous models that operations research practitioners encounter. Therefore, several methods have been proposed to solve it. Among these methods, Genetic Algorithm (GA) appears to carry very promising performances. However, despite the huge number of papers being published with this approach, only few of them deal with the encoding representation and its role in the reported performances. In this paper, we present classical and new encoding representations for the unsupervised graph partitioning problem. That is, we suppose that the number of partition subsets (clusters) is not known apriori. Next, we conduct an empiric comparison to identify the most promising encodings.
URI/URL: https://doi.org/10.1016/j.cie.2019.106025
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7242
ISSN: 0360-8352
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Ali Chaouchea.pdf2,9 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires