Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7242
|
Titre: | Solving the unsupervised graph partitioning problem with genetic algorithms: Classical and new encoding representations |
Auteur(s): | Chaouche, Ali Boulif, Menouar |
Mots-clés: | Graph partitioning K-way partition Genetic algorithm Encoding representatio P-median |
Date de publication: | 2019 |
Editeur: | Elsevier |
Collection/Numéro: | Computers & Industrial Engineering /Vol.137 (2019); |
Résumé: | The Graph Partitioning Problem (GPP) is one of the most ubiquitous models that operations research practitioners
encounter. Therefore, several methods have been proposed to solve it. Among these methods, Genetic
Algorithm (GA) appears to carry very promising performances. However, despite the huge number of papers
being published with this approach, only few of them deal with the encoding representation and its role in the
reported performances.
In this paper, we present classical and new encoding representations for the unsupervised graph partitioning
problem. That is, we suppose that the number of partition subsets (clusters) is not known apriori. Next, we
conduct an empiric comparison to identify the most promising encodings. |
URI/URL: | https://doi.org/10.1016/j.cie.2019.106025 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7242 |
ISSN: | 0360-8352 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|