DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8155

Titre: A novel method for fractal-fractional differential equations
Auteur(s): Attia, Nourhane
Akgül, Ali
Seba, Djamila
Nour, Abdelkader
Asad, Jihad
Mots-clés: Reproducing kernel Hilbert space method
Gram-Schmidt orthogonalization process
Fractal-fractional derivative
Mittag–Leffler kernel
Date de publication: 2022
Editeur: Elsevier
Collection/Numéro: Alexandria Engineering Journal/ Vol.61, N°12 (2022);pp. 9733-9748
Résumé: We consider the reproducing kernel Hilbert space method to construct numerical solutions for some basic fractional ordinary differential equations (FODEs) under fractal fractional derivative with the generalized Mittag–Leffler (M-L) kernel. Deriving the analytic and numerical solutions of this new class of differential equations are modern trends. To apply this method, we use reproducing kernel theory and two important Hilbert spaces. We provide three problems to illustrate our main results including the profiles of different representative approximate solutions. The computational results are compared with the exact solutions. The results obtained clearly show the effect of the fractal fractional derivative with the M-L kernel in the obtained outcomes. Meanwhile, the compatibility between the approximate and exact solutions confirms the applicability and superior performance of the method
URI/URL: https://doi.org/10.1016/j.aej.2022.02.004
https://www.sciencedirect.com/science/article/pii/S1110016822000928
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8155
ISSN: 11100168
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Nourhane Attia.pdf1,01 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires