Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8155
|
Titre: | A novel method for fractal-fractional differential equations |
Auteur(s): | Attia, Nourhane Akgül, Ali Seba, Djamila Nour, Abdelkader Asad, Jihad |
Mots-clés: | Reproducing kernel Hilbert space method Gram-Schmidt orthogonalization process Fractal-fractional derivative Mittag–Leffler kernel |
Date de publication: | 2022 |
Editeur: | Elsevier |
Collection/Numéro: | Alexandria Engineering Journal/ Vol.61, N°12 (2022);pp. 9733-9748 |
Résumé: | We consider the reproducing kernel Hilbert space method to construct numerical solutions for some basic fractional ordinary differential equations (FODEs) under fractal fractional derivative with the generalized Mittag–Leffler (M-L) kernel. Deriving the analytic and numerical solutions of this new class of differential equations are modern trends. To apply this method, we use reproducing kernel theory and two important Hilbert spaces. We provide three problems to illustrate our main results including the profiles of different representative approximate solutions. The computational results are compared with the exact solutions. The results obtained clearly show the effect of the fractal fractional derivative with the M-L kernel in the obtained outcomes. Meanwhile, the compatibility between the approximate and exact solutions confirms the applicability and superior performance of the method |
URI/URL: | https://doi.org/10.1016/j.aej.2022.02.004 https://www.sciencedirect.com/science/article/pii/S1110016822000928 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8155 |
ISSN: | 11100168 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|