DSpace À propos de l'application DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/9864

Titre: New reduced kernel PCA for fault detection and diagnosis in cement rotary kiln
Auteur(s): Bencheikh, Fares
Harkat, M. F.
Kouadri, A.
Bensmail, A.
Mots-clés: Principal component analysis
Kernel PCA
Reduced KPCA
Redundancy
Euclidean distance
Fault detection
Cement rotary kiln
Date de publication: 2020
Editeur: Elsevier
Collection/Numéro: Chemometrics and Intelligent Laboratory Systems/ Vol. 204, N°104091(2020);
Résumé: Fault detection and diagnosis (FDD) based on data-driven techniques play a crucial role in industrial process monitoring. It intends to promptly detect and identify abnormalities and enhance the reliability and safety of the processes. Kernel Principal Component Analysis (KPCA) is a powerful FDD based data-driven method. It has gained much interest due to its ability in monitoring nonlinear systems. However, KPCA suffers from high computing time and large storage space when a large-sized training dataset is used. So, extracting and selecting the more relevant observations could provide a good solution to high computation time and memory re- quirements costs. In this paper, a new Reduced KPCA (RKPCA) approach is developed to address that issue. It aims to preserve one representative observation for each similar and selected Euclidean distance between training samples. Afterwards, the obtained reduced training dataset is used to build a KPCA model for FDD purposes. The developed RKPCA scheme is tested and evaluated across a numerical example and an actual involuntary process fault and various simulated sensor faults in a cement plant. The obtained results show high monitoring perfor- mance with highest robustness to false alarms and maximum fault detection sensitivity compared to conventional PCA, KPCA and other well-established RKPCA techniques. Furthermore, the unified contribution plot method demonstrates superior potentials in identifying faulty variables.
URI/URL: https://doi.org/10.1016/j.chemolab.2020.104091
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/9864
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
New reduced kernel PCA for fault detection and diagnosis in cement rotary kiln.pdf1,79 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires